If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-2x=11
We move all terms to the left:
3x^2-2x-(11)=0
a = 3; b = -2; c = -11;
Δ = b2-4ac
Δ = -22-4·3·(-11)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{34}}{2*3}=\frac{2-2\sqrt{34}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{34}}{2*3}=\frac{2+2\sqrt{34}}{6} $
| 1/3x+4=3/4+6x | | 1.08x×0.65=148.5 | | 13x+4=34+6x | | 1.08×x×0.65=148.5 | | 22=p/5 | | -12u+15=9-18u | | -3(x-10)-5x-15=2(x-6)+11-2x | | 8/3x+1/3x=131/3+7/3 | | 4(-19-q)=3(-3q-4) | | y-30=70 | | 6p=3p+2 | | 6p=33p+2 | | -8t+86=-20t-10 | | -9u-46=-2(u-5) | | 3(9-8x-4x)+8(3x+3)=11 | | 6p=30+2 | | 4/7z=4/9 | | -10+a=-7 | | 89+7x=180 | | 3(-15-8c)=3(-10c-24) | | 5(u+6)=-4u-15 | | -2z+3+7z=-17 | | −7c+9=c+1 | | 48-6x=2(x-4) | | 3(w-3)+13=55 | | 6x+10=10x10 | | 4=60d/9 | | 7x+-1=180 | | 3(4r-2)=12r | | 4x-12=2(x-1) | | -21g-12=98-10g | | 18-17+5-6x=13x-2+4x |